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Mechanism of generic time variability for chaotic pattern selection
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We studied the mechanism of alternating pattern competition between « and 8 modes at the
surface of a fluid layer that is forced vertically. We found that when chaos is realized, the 8 pattern
develops the degeneracy Br, 8L such that the choice between Br and Br, after each excitation of
the o mode, becomes undeterministic. We found, however, well defined time variability for such a

chaotic pattern selection, which appears generic.

PACS number(s): 05.45.4+b, 05.40.+j, 47.20.Ky

Theoretically, it is well known that chaos is possible in
a simple system with only three degrees of freedom [1].
Experimentally, it is now firmly established that some
hydrodynamic systems, such as Rayleigh-Bénard convec-
tion or Taylor-Couette low under suitable geometric con-
figurations, can have the chaotic states that can be de-
scribed by few-dimensional chaotic attractors [2]. Near
critical regime where dynamics passes from a linear to
nonlinear range, essential dynamics is often described by
a few degrees of freedom. Chaotic dynamics in such a
post-critical range has been under active research in re-
cent years.

Still, one would like to understand the physical ori-
gin of the chaotic dynamics in simple physical terms. In
this respect, the study done by Ciliberto and Gollub [3] is
noteworthy: They reported experiments in which chaotic
behavior clearly arises from a simple mechanism, compe-
tition between two modes of different spatial symmetry,
say, between a and 3 patterns. With the same motiva-
tion, the purpose of this study is to provide a theoretical
explanation for such simple experimental observations.
Our analysis is based on the theoretical model for the
above experiment derived by Meron and Procaccia [4].
We found that, for chaos to be realized with two differ-
ent patterns, one of them needs to develop degeneracy,
say, Br and (L, so that, after each excitation of the a
pattern, the system has to choose one of the degenerate
states, Bgr or Br. This pattern selection is found to be
completely unpredictable in the long run. Explicit forms
of the spatial patterns «, Bgr, BL, are shown, and the ori-
gin for the degeneracy as well as the mechanism for the
chaotic behavior are discussed. Significantly, we found
the existence of well defined time variability — which we
refer to here as the “clock” for convenience — in such a
chaotic pattern selection.

We start by introducing the physical system of interest
and the relevant experimental results. The system is a
cylindrical fluid layer in a container that is subjected to
a small vertical oscillation. This system was first studied
experimentally by Faraday [5], and the linear instabil-
ity was explained by Benjamin and Ursell [6]. It is well
known that if the driving amplitude exceeds a critical
value A.(v), which is a function of frequency, the free
surface is deformed, which can be written as a super-
position of normal modes. The modes are basically the
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eigenmodes of the operator /%, where v, = 8,2 + 9,79,
and z = 0 is at the free surface of the fluid in the quiescent
state. These modes are (m,n) = Jom(km.n,)e™?, where
Jm is the Bessel function of order, m,r is the radial co-
ordinate, 6 is the azimuthal coordinate, and the allowed
wave number k,, ,, is determined by the boundary condi-
tion that the derivative J'(k., n, R) = 0, where R is the
radius of the cylinder. The eigenmode amplitude devel-
ops an instability when the corresponding eigenfrequency
(given by the dispersion law for capillary-gravity waves)
is approximately in resonance with half the driving fre-
quency v, and A exceeds A.. This parametric instability
leads to standing waves in which the mode amplitude
oscillates at L.

Ciliberto and Gollub [3], in their experiment with wa-
ter 1 cm in depth in the container (R = 6.35) mounted on
the cone of a loudspeaker oscillating vertically, observed
that the chaotic state in the postcritical regime is charac-
terized simply by the competition between the (4,3) mode
and the (7,2) mode at a mean frequency that is more than
two orders of magnitude smaller than v (i.e., at long time
scale). Synchronizing at the fast driving frequency, one
can measure the slowly varying parts of the mode am-
plitudes. In this postcritical regime, Meron and Procac-
cia [4] were able to derive a set of two coupled complex
equations from the infinite-dimensional hydrodynamical
equations as the governing equations of motion for the
experimental observations. Denoting the slowly varying
parts of the (4,3) and (7,2) modes by o and 3, the time
dependence of a and 3 is given by

Qy = (_LOL + 7’¢a)a + ’Ll_‘la* + 1F2|a[2a
+1T3|8)%a + iLya* B2,
B = (—Lp + 1¢3)8 + 18, 8% +1A,]a|’B
+1A3]a)’8 + 18482, (1)
where the real coefficients Lo, and Lg are the damp-

ing factors representing energy dissipation and the co-
efficients I';, A;, ¢o, and ¢g are determined from the

- boundary and initial conditions.

Meron and Procaccia [4], for the set of parameters

__ 49.449-0.5w __ 50.2256—0.5w _
chosen as ¢, = =FE¢, P = T o0, La =

Lg = 3.21543 x 107 %w, T'; = 3.12918 x 10734w?, I'; =
—3.21543 x 103w, I's = 5.46624 x 10 2w, Ty = 0., Ay =
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FIG. 1. (a) Phase diagram in the parameter space spanned
by forcing amplitude A and frequency w. White area, a quies-
cent state; shaded area; only the (4,3) mode is excited; dark-
ened area, both the (4,3) and (7,2) modes are excited. (b)
Detailed dynamical states near the center region. Each sym-
bol stands for a dynamical state as follows. e, a quiescent
state; O, the (4,3) mode state; [J, the (7,2) mode state; M,
both the (4,3) and (7,2) modes are excited but with no peri-
odic competition. A, periodic competition between the (4,3)
and (7,2) modes. A, chaotic competition between the (4,3)
and (7,2) modes.

(a)

(b)

t

FIG. 2. Amplitude competition between the (4,3) and (7,2)
modes; (a) periodic and (b) chaotic competition. The ampli-

tudes are normalized by the time averaged amplitude of the
(7,2) mode.
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3.15036 x 1073 Aw?, A, = 4.18006 x 1073w, A3z = TI's,
A4 = T'4, could basically reproduce the experimentally
observed phase diagram, as shown in Fig. 1(a). The ver-
tical axis denotes the forcing strength, and the horizontal
axis stands for the forcing frequency. The region marked
by (0,0) is a quiescent state with no motion, and the re-
gion marked by (4,3) stands for the region where only the
(4,3) mode is excited. In the darkened region, both the
(4,3) and (7,2) modes are excited and they show either
periodic or chaotic competition. In Fig. 1(b), we show
the detailed boundary between the two dynamical states
within this darkened region. The goal of Meron and Pro-
caccia’s work [4] was to demonstrate that one can go all
the way from the infinite-dimensional partial differential
equations to few-dimensional chaos in a hydrodynamic
system of experimental interest. The aim of this study is
to have a theoretical understanding of what causes such
periodic or chaotic pattern competition.

Figure 2(a) displays the time evolutions of the ampli-
tudes of the (4,3) and (7,2) modes when they exhibit peri-
odic competition. Here, the (7,2) mode is seen to lead the
(4,3) mode by about 90°. This characteristic, as pointed
out in the experiment, implies that the (7,2) mode pumps
the (4,3) mode. On the other hand, Fig. 2(b) shows the
chaotic competition between the two modes. Here again,
it is observed that the (7,2) mode always pumps the (4,3)
mode. However, the distribution of recurrence time of
the (7,2) mode, denoted by 7; in Fig. 2(b), as well as the
distribution of the returning amplitudes, appear chaotic.

One may search for the reason for such observed be-
havior from the trajectorial motions in the phase space.
Since Eq. (1) consists of two complex coupled equa-
tions, one may view the solution as a flow in a four-
dimensional phase space spanned by Re(4,3), Im(4,3),
Re(7,2), Im(7,2) axes. For a simple periodic motion,
most of its dynamical characteristics are usually cap-
tured within a 2D phase space. So we first plotted the
trajectory of the periodic state of Fig. 2(a) in the (4,3)
mode subspace, i.e., the subspace spanned by Re(4,3) and
Im(4,3) axes, and obtained, as a result, a circular closed
orbit denoted by @, as shown in Fig. 3(a). The system is
found to exhibit the bigger periodic orbit b just before it
enters into the chaotic state.

Let us view the same process in the (7,2) subspace.
The corresponding orbits aand b in the (7,2) mode sub-
space are shown in Fig. 3(b), where the dynamic evo-
lution from a to b appears to show a marked difference
from the corresponding evolution exhibited in the (4,3)
mode subspace. Notice that the phase portraits that are
shown here are clearly the ones for a particle moving in a
double-well potential: The phase portraits indicate that
between the orbit a and b exists a separatrix correspond-
ing to the energy of the ridge in the double-well poten-
tial. The dynamical evolution from the state a to b has
been known as separatrix (or homoclinic) crossings [7].
We emphasize here that one would not have noticed such
separatrix crossings if the process was viewed only within
the (4,3) mode subspace alone: We learned here that in
the (4,3) mode subspace the orbit of the double symmet-
rical homoclinic loop is folded onto itself such that only
one single loop appears.
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FIG. 3. Phase trajectory of the state of Fig. 2(a) projected
on (a) the (4,3) mode subspace and on (b) the (7,2) mode
subspace. The a orbit grows to b before losing its stability
to a chaotic state. (c) Spatial pattern corresponding to the
phase point S. The circle of pattern discontinuity is where
the container is located. (d) The degenerate spatial patterns.
Br corresponds to the phase point R, and 81 corresponds to
the phase point L. The phase trajectory of the chaotic state
of Fig. 2(b) projected on (e) the (4,3) subspace and on (f)
the (7,2) subspace.
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The separate descriptions of the phase trajectories in
the (4,3) and the (7,2) subspaces, as shown in Figs. 3(a)
and 3(b), do not tell us about the relative phase rela-
tionship between the trajectories projected on each sub-
space. Detailed observation, however, shows that when
the phase point in the (7,2) subspace reaches the farthest
point away from the origin, say, the point R in the orbit
b, the corresponding phase point in the (4,3) subspace is
passing near the origin. And, as the phase point in the
(7,2) subspace returns near to the origin from R, the cor-
responding phase point in the (4,3) subspace reaches the
farthest point S from the origin, as shown in Fig. 3(a).
As the phase point in the (7,2) subspace moves from the
origin to the other farthest point L and then moves back
to near the origin again, the corresponding phase point
in the (4,3) space travels from S to near the origin and
back to S again. The whole process mentioned above is
found to repeat again and again. Thus we conclude that
the phase motions in both the (4,3) and (7,2) subspaces
are a “recurrent” motion bounded by a homoclinic orbit,
and the motion in the (7,2) subspace simply leads the
corresponding motion in the (4,3) subspace by 7.

Next we consider the coherent patterns that are excited
in the system. Notice that our system is an open system.
It constantly receives energy from the outside source, i.e.,
from the vertical oscillation, and uses the energy to excite
small length scale coherent structures where energy is dis-
sipated away, for example, by setting up the vibrational
motion of the surrounding air molecules. Notice that a
point at a certain moment in the phase space represents
the physical state at that moment, and we are interested
in finding out the corresponding spatial pattern of the
point, say, S in the (4,3) mode space. Figure 3(c) shows
the spatial structure corresponding to the point S, where
the circle of pattern discontinuity is where the container
is located. It has four radiating arms, which we refer to
here as an « pattern. Figure 3(d) shows two other spatial
structures called Bz and (31 corresponding, respectively,
to the points R and L in Fig. 3(b). Or and 81, have the
same spatial symmetry with seven radiating arms; ro-

tating one by ﬁ will lead to itself. Here fgr is found
rotated with respect to 8 only by (",5,6;);) and we may

thus consider these two structures as degenerate struc-
tures. These are the coherent patterns involved in the
periodic competition between the (4,3) and (7,2) modes.
The a state exhibits the pattern competition showing the
sequence of «, Bgr, @, Br, @, PR, ..., and so on. The b
state, on the other hand, exhibits the sequence of «, Og,
«, B, «, Br, --., where the a pattern is followed by SBr
and B alternatively.

Next we consider the chaotic states. Figures 3(e)
and 3(f) show the phase portraits corresponding to the
chaotic state of Fig. 2(b). Notice that the trajectory in
the (4,3) mode keeps coming back near to the point de-
noted by S. On the other hand, the trajectory in the (7,2)
mode keeps visiting near the points, either R or L . So
the spatial pattern competition would exhibit the o pat-
tern followed by either Bg or 8. How are we sure that
the competition is completely chaotic? The answer can
be found by rearranging the set of data formed by the re-
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currence times 7; between the 8 pattern excitations, as il-
lustrated in Fig. 2(b). By plotting 7,11 as a function of 7;,
we found that there exists a well defined one-dimensional
function f such that 7,41 = f(7),i=1,2,3... . Figure
4 shows the resulting functional form of f.

The function f has an unstable fixed point, i.e., the
crossing point between the 45° line and the function f
itself; the magnitude of the gradient at the crossing point
is greater than 1, so it is unstable. Figure 4 also illus-
trates how to get 7,41 reversely from the functional form
of f, once it is given. Starting from the point near the
unstable fixed point, (i) move horizontally to the 45° line
and then (ii) move vertically to f, and repeat the pro-
cesses (i) and (ii): Every time f is hit, we read off its
vertical axis, i.e., 7;41, and in this way we can get the
time intervals between the excitations of the (7,2) mode.

How can this function f be related to the chaotic pat-
tern competition? Notice that f consists of two separate
walls connected at the sharp peak at the middle. We
merely point out here that the existence of the nondif-
ferentiable peak of f results from the existence of the
saddle point corresponding to the ridge potential. The
right-hand wall, as we found, is constructed only when
the trajectory in Fig. 3(f) crosses from left to right or
from right to left. If the trajectory stays just in one side
without crossing to the other side, then only the left wall
of the function f is constructed. Since the system ex-
cites the Br (or Or) pattern when its phase trajectory
visits near R (or L) in Fig. 3(f), we can interpret the
specific functional form of f in terms of the coherent
patterns as follows. If the successive selection of the
pattern, after each excitation of the a pattern, is such
that 8r,0r,0r,0L, then the period of such pattern selec-
tion is described by the right-hand wall of f, and if the
pattern selection is such that 81,8.,8L - .., or Br,0r,Br

.., then such a period of selecting one pattern is de-
scribed by the left wall of f.

Significantly, in addition to indicating whether it would
be Br or Br, the function f also tells about when, or
how soon, to pick up the next coming 3 pattern. In
other words, it describes how the time intervals 7; patch
up the time axis. Clearly, the function f plays the role
of a clock for the system. The gradient of f, however,
indicates that no two time intervals are the same, so that
the distribution of the time intervals, 741,71 = 1,2,3...
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FIG. 4. One-dimensional function f defining 7it1
= f(m),7 = 1,2,3..., where 7; is a time interval between suc-
cessive excitation of the (7,2) mode, as illustrated in Fig. 2(b).
7 denotes the average value of 7;. The 45° line is inserted for
convenience. f has an unstable fixed point, the crossing point
with the 45° line. The lines unwinding from the fixed point
are inserted to illustrate how to read off 741 from f. See
the text for the implications of this function f, and for the
reasons for calling it a nonlinear clock for the chaotic pattern
selection.

is completely random. Furthermore, the time here is not
a simple number but a geometric parameter, as indicated
by the sharp peak of f. We may thus refer to this clock
as a “nonlinear clock” embedded in the system. The
significance of this clock is that it dictates, as we found,
what the future “chaotic” pattern selection would be.

Finally, we emphasize that the presence of the same
nonlinear clock was actually predicted by the Lorenz
chaotic attractor [1,8]. But the physical significance of
the clock could not be appreciated by the Lorenz attrac-
tor alone. In this respect, the present incidence clearly
illustrates its physical implications in terms of coherent
patterns, particularly in association with a hydrodynam-
ical system of experimental interest. Furthermore, we
found the same clock also embedded in the partial differ-
ential equation known as the Ginzburg-Landau equation
[8]. These are the evidences supporting, as we believe,
the genericity of the clock f in nonlinear systems.
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